论文标题

没有少量的联盟锁定家庭中丰富的元素数量

The number of abundant elements in union-closed families without small sets

论文作者

Kabela, Adam, Polák, Michal, Teska, Jakub

论文摘要

我们让$ \ MATHCAL {F} $为在\ Mathcal {f} $中关闭的有限套件,$ \ emptyset \ not \ not \ in \ Mathcal {f} $,如果元素属于$ \ Mathcal {f} $的一半以上。在此表示法中,古典Frankl的猜想(1979)断言$ \ Mathcal {f} $具有丰富的元素。 Poonen(1992)指出,如果$ \ nathcal {f} $完全具有一个丰富的元素,那么此元素属于$ \ nathcal {f} $的每一集,而Cui and Hu(2019)和Hu(2019)至少会调查$ \ ntarcal {f} $ k $ k $ k $ k $ k $ k $ k $ k $ k berive ins if insc nif insc $ k abif insc $ k abif insc nif insc $ k obles in capl of insc。至少$ k $。 Cui和Hu猜想这是$ k = 2 $的,并询问这是否也适用于$ k = 3 $和$ k> \ frac {n} {2} $,其中$ n $是最大的$ \ nathcal {f} $的大小。 We show that $\mathcal{F}$ has at least $k$ abundant elements if $k \geq n - 3$, and that $\mathcal{F}$ has at least $k - 1$ abundant elements if $k = n - 4$, and we construct a union-closed family with precisely $k - 1$ abundant elements for every $k$ and $n$ satisfying $n - 4 \geq k \ geq 3 $和$ n \ geq 9 $(对于$ k = 3 $和$ n = 8 $)。我们还注意到,$ \ MATHCAL {F} $始终具有至少$ \ min \ {n,2k -n + 1 \} $丰富的元素。另一方面,我们构建了一个与Union Closed家族的家庭,每$ k $和满足$ n \ geq \ max \ {3,5k-4 \} $的每一个精确的两个丰富元素。最后,我们证明了Cui和Hu对$ K = 2 $的猜想位于Frankl的猜想和Poonen的猜想之间。

We let $\mathcal{F}$ be a finite family of sets closed under taking unions and $\emptyset \not \in \mathcal{F}$, and call an element abundant if it belongs to more than half of the sets of $\mathcal{F}$. In this notation, the classical Frankl's conjecture (1979) asserts that $\mathcal{F}$ has an abundant element. As possible strengthenings, Poonen (1992) conjectured that if $\mathcal{F}$ has precisely one abundant element, then this element belongs to each set of $\mathcal{F}$, and Cui and Hu (2019) investigated whether $\mathcal{F}$ has at least $k$ abundant elements if a smallest set of $\mathcal{F}$ is of size at least $k$. Cui and Hu conjectured that this holds for $k = 2$ and asked whether this also holds for the cases $k = 3$ and $k > \frac{n}{2}$ where $n$ is the size of the largest set of $\mathcal{F}$. We show that $\mathcal{F}$ has at least $k$ abundant elements if $k \geq n - 3$, and that $\mathcal{F}$ has at least $k - 1$ abundant elements if $k = n - 4$, and we construct a union-closed family with precisely $k - 1$ abundant elements for every $k$ and $n$ satisfying $n - 4 \geq k \geq 3$ and $n \geq 9$ (and for $k = 3$ and $n = 8$). We also note that $\mathcal{F}$ always has at least $\min \{ n, 2k - n + 1 \}$ abundant elements. On the other hand, we construct a union-closed family with precisely two abundant elements for every $k$ and $n$ satisfying $n \geq \max \{ 3, 5k-4 \}$. Lastly, we show that Cui and Hu's conjecture for $k = 2$ stands between Frankl's conjecture and Poonen's conjecture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源