论文标题

使用机器学习的静态平均数量过冷液体的动力学

Dynamics of supercooled liquids from static averaged quantities using machine learning

论文作者

Ciarella, Simone, Chiappini, Massimiliano, Boattini, Emanuele, Dijkstra, Marjolein, Janssen, Liesbeth M. C.

论文摘要

我们介绍了一种机器学习方法,以预测静态平均量的超冷液体的复杂非马克维亚动力学。与基于粒子倾向的技术相比,我们的方法建立在一种理论框架上,该框架用作输入和输出系统平均数量,因此在无法提供粒子解决信息的实验环境中更易于应用。在这项工作中,我们使用其静态结构因子作为输入来预测二进制混合物的自我中间散射功能。虽然其性能在训练数据的温度范围内非常出色,但该模型还保留了一些可转移性,以在低于训练的温度下进行体面的预测,或者当我们将其用于类似系统时。我们还制定了一种进化策略,该策略能够构建观察到的非马克维亚动力学基础的现实记忆函数。这种方法使我们得出结论,超冷液体的记忆函数可以被有效地参数化为两个拉伸指数的总和,这实际上对应于两种主要的弛豫模式。

We introduce a machine-learning approach to predict the complex non-Markovian dynamics of supercooled liquids from static averaged quantities. Compared to techniques based on particle propensity, our method is built upon a theoretical framework that uses as input and output system-averaged quantities, thus being easier to apply in an experimental context where particle resolved information is not available. In this work, we train a deep neural network to predict the self intermediate scattering function of binary mixtures using their static structure factor as input. While its performance is excellent for the temperature range of the training data, the model also retains some transferability in making decent predictions at temperatures lower than the ones it was trained for, or when we use it for similar systems. We also develop an evolutionary strategy that is able to construct a realistic memory function underlying the observed non-Markovian dynamics. This method lets us conclude that the memory function of supercooled liquids can be effectively parameterized as the sum of two stretched exponentials, which physically corresponds to two dominant relaxation modes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源