论文标题

大型语言模型符合NL2Code:调查

Large Language Models Meet NL2Code: A Survey

论文作者

Zan, Daoguang, Chen, Bei, Zhang, Fengji, Lu, Dianjie, Wu, Bingchao, Guan, Bei, Wang, Yongji, Lou, Jian-Guang

论文摘要

从自然语言描述或NL2Code中生成代码的任务被认为是代码智能中的紧迫挑战。得益于训练前技术的快速发展,为代码提出了飙升的大语言模型,从而引发了NL2Code的进步。为了促进该领域的进一步研究和应用,在本文中,我们对27种现有的NL2Code现有大语模型进行了全面调查,并审查了基准和指标。我们提供了人类基准测试中所有现有模型的直观比较。通过深入的观察和分析,我们提供了一些见解,并得出结论,即有助于大型语言模型NL2代码成功的关键因素是“大尺寸,高级数据,专家调整”。此外,我们讨论了有关模型与人类之间差距的挑战和机遇。我们还创建了一个网站https://nl2code.github.io,通过人群来跟踪最新进度。据我们所知,这是对NL2Code的大型语言模型的首次调查,我们认为这将有助于该领域的持续发展。

The task of generating code from a natural language description, or NL2Code, is considered a pressing and significant challenge in code intelligence. Thanks to the rapid development of pre-training techniques, surging large language models are being proposed for code, sparking the advances in NL2Code. To facilitate further research and applications in this field, in this paper, we present a comprehensive survey of 27 existing large language models for NL2Code, and also review benchmarks and metrics. We provide an intuitive comparison of all existing models on the HumanEval benchmark. Through in-depth observation and analysis, we provide some insights and conclude that the key factors contributing to the success of large language models for NL2Code are "Large Size, Premium Data, Expert Tuning". In addition, we discuss challenges and opportunities regarding the gap between models and humans. We also create a website https://nl2code.github.io to track the latest progress through crowd-sourcing. To the best of our knowledge, this is the first survey of large language models for NL2Code, and we believe it will contribute to the ongoing development of the field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源