论文标题

在不同的悬停运动学下拍打空气动力学的强大数据驱动模型

A Robust Data-Driven Model for Flapping Aerodynamics under different hovering kinematics

论文作者

Calado, Andre, Poletti, Romain, Koloszar, Lilla K., Mendez, Miguel A.

论文摘要

拍打机翼微型航空车辆(FWMAV)是高度可操纵的生物启发的无人机,可以协助进行调查和救援任务。拍打翅膀产生了各种不稳定的提升增强机制,挑战了还原模型的推导,以预测瞬时空气动力学性能。在这项工作中,我们提出了一个强大的CFD数据驱动的准稳态(QS)减少订单模型(ROM),以预测在拍打周期内的提升和拖动系数。该模型是针对在悬停条件下具有不同参数化运动学不同的刚性椭圆机翼而得出的。提出的ROM是通过两阶段回归构建的。定义为“周期内”(IC)的第一阶段计算回归的参数,该参数将空气动力系数连接到瞬时翼状态。第二阶段是“循环外”(OOC),将IC权重链接到定义拍打运动的拍打特征。培训和测试数据集是通过使用填充方法通过高保真模拟生成的,跨越了雷诺数字和拍打运动学。两阶段回归剂结合了脊回归和高斯过程(GP)回归,以提供模型不确定性的估计。拟议的ROM显示了针对广泛变化的运动学的准确空气动力学预测。该模型最适合产生稳定前沿涡流(LEV)的光滑运动学。在LEV部分脱落,非循环部力的动态场景中也观察到了明显准确的预测,并且机翼遇到了它自己的唤醒。

Flapping Wing Micro Air Vehicles (FWMAV) are highly manoeuvrable, bio-inspired drones that can assist in surveys and rescue missions. Flapping wings generate various unsteady lift enhancement mechanisms challenging the derivation of reduced models to predict instantaneous aerodynamic performance. In this work, we propose a robust CFD data-driven, quasi-steady (QS) Reduced Order Model (ROM) to predict the lift and drag coefficients within a flapping cycle. The model is derived for a rigid ellipsoid wing with different parameterized kinematics in hovering conditions. The proposed ROM is built via a two-stage regression. The first stage, defined as `in-cycle' (IC), computes the parameters of a regression linking the aerodynamic coefficients to the instantaneous wing state. The second stage, `out-of-cycle' (OOC), links the IC weights to the flapping features that define the flapping motion. The training and test dataset were generated via high-fidelity simulations using the overset method, spanning a wide range of Reynolds numbers and flapping kinematics. The two-stage regressor combines Ridge regression and Gaussian Process (GP) regression to provide estimates of the model uncertainties. The proposed ROM shows accurate aerodynamic predictions for widely varying kinematics. The model performs best for smooth kinematics that generate a stable Leading Edge Vortex (LEV). Remarkably accurate predictions are also observed in dynamic scenarios where the LEV is partially shed, the non-circulatory forces are considerable, and the wing encounters its own wake.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源