论文标题

波哈米亚的力学是一种实用工具

Bohmian Mechanics as a Practical Tool

论文作者

Oianguren-Asua, Xabier, Destefani, Carlos F., Villani, Matteo, Ferry, David K., Oriols, Xavier

论文摘要

在本章中,我们将围绕几个热点进行旅行,即使在没有测量的情况下,Bohmian力学及其描述显微镜现实的能力也可以作为计算工具来利用,以帮助预测现象学上可访问的信息(对哥本哈根理论的追随者也有用)。作为第一个示例,我们将看到随机schrödinger方程用于计算非马克维亚开放量子系统的降低密度矩阵时,似乎一定必须采用有条件波函数的Bohmian概念。我们将看到,通过用解释为这些条件波形打扮,Bohmian理论可以被证明是建立通用量子框架的有用工具,例如高频电子传输模型。作为第二个示例,我们将介绍如何从Bohmian轨迹的数值属性中衍生出哥本哈根的“可观察到操作员”,即使在Bohmian机械中,对于“未衡量”的系统,它也是明确的。最重要的是,在实践中,即使这些数字没有本体论含义,我们不仅能够模拟(因此,预测和谈论)它们,而且我们将看到它们可以在弱价值实验中在操作上确定它们。因此,无论量子理论如何,它们都将是描述量子系统的实用数字。

In this chapter, we will take a trip around several hot-spots where Bohmian mechanics and its capacity to describe the microscopic reality, even in the absence of measurements, can be harnessed as computational tools, in order to help in the prediction of phenomenologically accessible information (also useful for the followers of the Copenhagen theory). As a first example, we will see how a Stochastic Schrödinger Equation, when used to compute the reduced density matrix of a non-Markovian open quantum system, necessarily seems to employ the Bohmian concept of a conditional wavefunction. We will see that by dressing these conditional wavefunctions with an interpretation, the Bohmian theory can prove to be a useful tool to build general quantum frameworks, like a high-frequency electron transport model. As a second example, we will introduce how a Copenhagen "observable operator" can be derived from numerical properties of the Bohmian trajectories, which within Bohmian mechanics, are well-defined even for an "unmeasured" system. Most importantly in practice, even if these numbers are given no ontological meaning, not only we will be able to simulate (thus, predict and talk about) them, but we will see that they can be operationally determined in a weak value experiment. Therefore, they will be practical numbers to characterize a quantum system irrespective of the followed quantum theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源