论文标题

二维材料中的多阵容相互作用和统计

Multi-Meron Interactions and Statistics in Two-Dimensional Materials

论文作者

Lu, Xiaobo, Zhu, Linghan, Yang, Li

论文摘要

作为二维(2D)磁铁中拓扑自旋纹理的基本类型,磁性梅隆带有半耗时性拓扑电荷,并形成了与其对立面的一对,以保持材料的稳定性。但是,由于特征性高度不均匀的自旋纹理,通过使用广泛使用的连续模型来定量计算梅隆及其动力学是一项挑战。在这项工作中,我们开发了一种离散方法来解决梅隆核心周围的集中旋转结构。当梅隆的距离大于其核心大小的两倍并获得梅隆气体的后续统计数据时,我们揭示了对数尺度的相互作用。该模型还预测了单个和配对的梅隆的这些特性如何随磁交换相互作用而演变,并且使用真实的2D van der waals磁性材料的参数与蒙特卡洛模拟非常吻合。这种离散方法不仅显示了梅隆系统的平衡静态统计,而且还可以通过量化的配对相互作用进一步探索梅隆的动态特性。

As a fundamental type of topological spin textures in two-dimensional (2D) magnets, a magnetic meron carries half-integer topological charge and forms a pair with its antithesis to keep the stability in materials. However, it is challenging to quantitatively calculate merons and their dynamics by using the widely used continuum model because of the characteristic highly inhomogeneous spin textures. In this work, we develop a discrete method to address the concentrated spin structures around the core of merons. We reveal a logarithmic-scale interaction between merons when their distance is larger than twice their core size and obtain subsequent statistics of meron gas. The model also predicts how these properties of single and paired merons evolve with magnetic exchange interactions, and the results are in excellent agreement with the Monte Carlo simulations using the parameters of real 2D van der Waals magnetic materials. This discrete approach not only shows equilibrium static statistics of meron systems but also is useful to further explore the dynamic properties of merons through the quantified pairing interactions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源