论文标题

基于NERF的GAN的对应蒸馏

Correspondence Distillation from NeRF-based GAN

论文作者

Lan, Yushi, Loy, Chen Change, Dai, Bo

论文摘要

神经辐射场(NERF)在保留对象和场景的细节方面显示出令人鼓舞的结果。但是,与基于网格的表示不同,在同一类别的不同NERF上建立密集的对应关系仍然是一个开放的问题,这在许多下游任务中都是必不可少的。这个问题的主要困难在于nerf的内在性质和缺乏基础通信注释。在本文中,我们表明,可以通过利用封装在基于预培训的NERF的GAN中的丰富语义和结构先验来绕过这些挑战。具体而言,我们从三个方面利用了此类先验,即1)将潜在代码作为全球结构指标的双重变形字段,2)将生成器特征视为几何学意识到的本地描述符; 3)3)无限对象特异性NERF样品的来源。我们的实验表明,这样的先验会导致3D致密的对应关系,这是准确,光滑和稳健的。我们还表明,整个NERF的建立密集对应可以有效地实现许多基于NERF的下游应用程序,例如纹理传输。

The neural radiance field (NeRF) has shown promising results in preserving the fine details of objects and scenes. However, unlike mesh-based representations, it remains an open problem to build dense correspondences across different NeRFs of the same category, which is essential in many downstream tasks. The main difficulties of this problem lie in the implicit nature of NeRF and the lack of ground-truth correspondence annotations. In this paper, we show it is possible to bypass these challenges by leveraging the rich semantics and structural priors encapsulated in a pre-trained NeRF-based GAN. Specifically, we exploit such priors from three aspects, namely 1) a dual deformation field that takes latent codes as global structural indicators, 2) a learning objective that regards generator features as geometric-aware local descriptors, and 3) a source of infinite object-specific NeRF samples. Our experiments demonstrate that such priors lead to 3D dense correspondence that is accurate, smooth, and robust. We also show that established dense correspondence across NeRFs can effectively enable many NeRF-based downstream applications such as texture transfer.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源