论文标题

窗口功能卷积具有深层神经网络模型

Window function convolution with deep neural network models

论文作者

Alkhanishvili, Davit, Porciani, Cristiano, Sefusatti, Emiliano

论文摘要

银河功率谱和双光谱的传统估计器对调查几何形状敏感。它们产生的光谱与真正的基础信号不同,因为它们与调查的窗口函数相连。对于当前和后代的实验,这种偏见在大尺度上具有统计学意义。因此,必须精确建模窗口函数对星系分布的摘要统计的影响。此外,该操作必须在计算上有效,以便在进行贝叶斯估计宇宙参数的同时进行后验概率。为了满足这些要求,我们建立了一个深度神经网络模型,该模型模仿了窗口功能的卷积,我们表明它提供了快速,准确的预测。我们使用2000(200)宇宙学模型在冷暗物质方案中训练(测试)网络,并证明其性能对宇宙学参数的精确值不可知。在所有情况下,深度神经网络都为功率光谱和双光谱提供模型,这些模型在10 $ $ s的时间表上准确地超过0.1%。

Traditional estimators of the galaxy power spectrum and bispectrum are sensitive to the survey geometry. They yield spectra that differ from the true underlying signal since they are convolved with the window function of the survey. For the current and future generations of experiments, this bias is statistically significant on large scales. It is thus imperative that the effect of the window function on the summary statistics of the galaxy distribution is accurately modelled. Moreover, this operation must be computationally efficient in order to allow sampling posterior probabilities while performing Bayesian estimation of the cosmological parameters. In order to satisfy these requirements, we built a deep neural network model that emulates the convolution with the window function, and we show that it provides fast and accurate predictions. We trained (tested) the network using a suite of 2000 (200) cosmological models within the cold dark matter scenario, and demonstrate that its performance is agnostic to the precise values of the cosmological parameters. In all cases, the deep neural network provides models for the power spectra and the bispectrum that are accurate to better than 0.1 per cent on a timescale of 10 $μ$s.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源