论文标题
与费米斯高斯电路的分离交互系统:应用于量子杂质模型
Disentangling Interacting Systems with Fermionic Gaussian Circuits: Application to Quantum Impurity Models
论文作者
论文摘要
张量网络量子状态是针对密切相关系统的强大工具,该工具是针对捕获本地相关性(例如在具有纠缠区法律的基础状态)的量身定制的。在将张量网络状态应用于交互的费米子系统时,适当的基础或轨道可以减少张量的键尺寸并提供物理相关的轨道。我们引入了这样的基础变化,并通过压缩费米斯高斯状态获得的统一大门进入与各种张量网络相对应的量子电路。这些电路可以减少基态纠缠熵并改善算法的性能,例如密度基质重归其化基团。我们研究了具有一种和两个杂质的安德森杂质模型,以表明该方法提高计算效率和解释杂质物理的潜力。此外,费米子高斯电路也可以在低能状态的时间内抑制纠缠。最后,我们考虑高斯多尺度的纠缠重新归一化ANSATZ(GMERA)电路,该电路会在层次上压缩费米子高斯州。从这些Gmera电路的新兴粗粒物理模型根据其纠缠特性和执行时间演变的适用性进行了研究。
Tensor network quantum states are powerful tools for strongly correlated systems, tailored to capture local correlations such as in ground states with entanglement area laws. When applying tensor network states to interacting fermionic systems, a proper choice of the basis or orbitals can reduce the bond dimension of tensors and provide physically relevant orbitals. We introduce such a change of basis with unitary gates obtained from compressing fermionic Gaussian states into quantum circuits corresponding to various tensor networks. These circuits can reduce the ground state entanglement entropy and improve the performance of algorithms such as the density matrix renormalization group. We study the Anderson impurity model with one and two impurities to show the potential of the method for improving computational efficiency and interpreting impurity physics. Furthermore, fermionic Gaussian circuits can also suppress entanglement during the time evolution out of low-energy state. Last, we consider Gaussian multi-scale entanglement renormalization ansatz (GMERA) circuits which compress fermionic Gaussian states hierarchically. The emergent coarse-grained physical models from these GMERA circuits are studied in terms of their entanglement properties and suitability for performing time evolution.