论文标题
间歇性放松和极度持久的活跃物质中的雪崩
Intermittent relaxation and avalanches in extremely persistent active matter
论文作者
论文摘要
我们使用数值模拟来研究在极大但有限的持久时间的极限下,自propelled颗粒的密集组装动力学。在此极限下,系统在机械平衡之间间歇性地演变,而主动力平衡了粒子间相互作用。我们制定了一种有效的数值策略,使我们能够解决由活动驱动的波动引起的弹性和塑性松弛事件的统计特性。该系统通过一系列无标度弹性事件和均取决于系统大小的广泛分布的塑料事件而放松。塑料事件之间的相关性导致新兴动态促进和异质放松动力学。我们的结果表明,极度持久的活动系统中的动态行为在质量上与剪切的无定形固体相似,但存在一些重要差异。
We use numerical simulations to study the dynamics of dense assemblies of self-propelled particles in the limit of extremely large, but finite, persistence times. In this limit, the system evolves intermittently between mechanical equilibria where active forces balance interparticle interactions. We develop an efficient numerical strategy allowing us to resolve the statistical properties of elastic and plastic relaxation events caused by activity-driven fluctuations. The system relaxes via a succession of scale-free elastic events and broadly distributed plastic events that both depend on the system size. Correlations between plastic events lead to emergent dynamic facilitation and heterogeneous relaxation dynamics. Our results show that dynamical behaviour in extremely persistent active systems is qualitatively similar to that of sheared amorphous solids, yet with some important differences.