论文标题
SVOM任务上的微通道X射线望远镜的光谱性能
Spectral performance of the Microchannel X-ray Telescope on board the SVOM mission
论文作者
论文摘要
微通道X射线望远镜(MXT)是一种创新的紧凑型X射线仪器,用于SVOM天文任务,用于研究瞬态现象,例如伽马射线爆发。在3周内,我们在MXT将在投票下进行的标称温度和真空条件下测试了MXT飞行模型。我们以一系列特征能量的数据收集了整个MXT能量范围的数据,从0.28 keV到9 keV,用于在检测器视野(FOV)内部和外部的多个源位置(fov)。我们在FOV之外使用PSF堆叠了位置的数据,以获得均匀的照明矩阵,并使用专用管道减少了所有数据集。我们使用优化的数据处理确定了MXT的最佳光谱性能,尤其是对于能量校准和像素低能阈值引起的电荷共享效果。我们的结果表明,MXT符合有关能量分辨率的仪器要求(<80 ev时为1.5 keV),低和高能量阈值以及能量校准的准确性($ \ pm $ 20 ev)。我们还确定了检测器的电荷转移效率低下(〜$ 10^{-5} $),并在MXT在其轨道内寿命期间将经历的辐射之前用能量进行建模。最后,我们测量了能量分辨率作为光子能量功能的关系。我们确定了MXT检测链的4.9 $ \ pm $ 0.2 e-rms的等效噪声充电,而在208 K时,硅的Fano系数为0.131 $ \ pm $ 0.003,与以前的作品一致。这项运动证实了MXT在任务寿命期间能够提供的有前途的科学表现。
The Microchannel X-ray Telescope (MXT) is an innovative compact X-ray instrument on board the SVOM astronomical mission dedicated to the study of transient phenomena such as gamma-ray bursts. During 3 weeks, we have tested the MXT flight model at the Panter X-ray test facility under the nominal temperature and vacuum conditions that MXT will undergo in-flight. We collected data at series of characteristic energies probing the entire MXT energy range, from 0.28 keV up to 9 keV, for multiple source positions with the center of the point spread function (PSF) inside and outside the detector field of view (FOV). We stacked the data of the positions with the PSF outside the FOV to obtain a uniformly illuminated matrix and reduced all data sets using a dedicated pipeline. We determined the best spectral performance of MXT using an optimized data processing, especially for the energy calibration and the charge sharing effect induced by the pixel low energy thresholding. Our results demonstrate that MXT is compliant with the instrument requirement regarding the energy resolution (<80 eV at 1.5 keV), the low and high energy threshold, and the accuracy of the energy calibration ($\pm$20 eV). We also determined the charge transfer inefficiency (~$10^{-5}$) of the detector and modeled its evolution with energy prior to the irradiation that MXT will undergo during its in-orbit lifetime. Finally, we measured the relation of the energy resolution as function of the photon energy. We determined an equivalent noise charge of 4.9 $\pm$ 0.2 e- rms for the MXT detection chain and a Fano factor of 0.131 $\pm$ 0.003 in silicon at 208 K, in agreement with previous works. This campaign confirmed the promising scientific performance that MXT will be able to deliver during the mission lifetime.