论文标题
取向图中的反应
Antipaths in oriented graphs
论文作者
论文摘要
我们表明,对于任何自然数量$ k \ ge 1 $,最低半标志的任何面向图形$ d $至少$(3k-2)/4 $包含一条反向的长度$ k $的路径。实际上,在$ d $的半标志序列上的状况略有弱,因此,我们证实了Addario-berry,Havet,Linhares Sales,Thomassé和Reed的猜想的弱化的反向路径版本。
We show that for any natural number $k \ge 1$, any oriented graph $D$ of minimum semidegree at least $(3k- 2)/4$ contains an antidirected path of length $k$. In fact, a slightly weaker condition on the semidegree sequence of $D$ suffices, and as a consequence, we confirm a weakened antidirected path version of a conjecture of Addario-Berry, Havet, Linhares Sales, Thomassé and Reed.