论文标题

Witten-Reshetikhin-turaev不变和无限期的假theta功能无限期的H-Graphs

Witten-Reshetikhin-Turaev invariants and indefinite false theta functions for plumbing indefinite H-graphs

论文作者

Murakami, Yuya

论文摘要

Gukov- Pei-Putrov- Vafa猜想存在$ Q $ series的存在,其径向限制是witten的 - reshetikhin--turaev novaniants,并将其称为同源块。对于弱负定的倾斜3型脉冲,Gukov-Pei-Putrov--Vafa和Gukov-Manolescu构建了同源块。在本文中,我们构建了无限期的假theta函数,这些函数是某些降低$ 3 $ manifolds的同源块的候选,这些函数并非弱负面。此外,我们证明,对于Poincaré同源性领域,我们的无限期假theta功能与原始同源块相吻合。

Gukov--Pei--Putrov--Vafa conjectured the existence of $ q $-series whose radial limits are Witten--Reshetikhin--Turaev invariants and called them homological blocks. For weakly negative definite plumbed 3-manifolds, Gukov--Pei--Putrov--Vafa and Gukov-Manolescu constructed homological blocks. In this paper, we construct indefinite false theta functions which are candidates of homological blocks for some plumbed $ 3 $-manifolds which are not weakly negative definite. Moreover we prove that, for the Poincaré homology sphere, our indefinite false theta function coincides with the original homological block.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源