论文标题
Witten-Reshetikhin-turaev不变和无限期的假theta功能无限期的H-Graphs
Witten-Reshetikhin-Turaev invariants and indefinite false theta functions for plumbing indefinite H-graphs
论文作者
论文摘要
Gukov- Pei-Putrov- Vafa猜想存在$ Q $ series的存在,其径向限制是witten的 - reshetikhin--turaev novaniants,并将其称为同源块。对于弱负定的倾斜3型脉冲,Gukov-Pei-Putrov--Vafa和Gukov-Manolescu构建了同源块。在本文中,我们构建了无限期的假theta函数,这些函数是某些降低$ 3 $ manifolds的同源块的候选,这些函数并非弱负面。此外,我们证明,对于Poincaré同源性领域,我们的无限期假theta功能与原始同源块相吻合。
Gukov--Pei--Putrov--Vafa conjectured the existence of $ q $-series whose radial limits are Witten--Reshetikhin--Turaev invariants and called them homological blocks. For weakly negative definite plumbed 3-manifolds, Gukov--Pei--Putrov--Vafa and Gukov-Manolescu constructed homological blocks. In this paper, we construct indefinite false theta functions which are candidates of homological blocks for some plumbed $ 3 $-manifolds which are not weakly negative definite. Moreover we prove that, for the Poincaré homology sphere, our indefinite false theta function coincides with the original homological block.