论文标题

当联合学习符合预先训练的语言模型的参数效率调整方法

When Federated Learning Meets Pre-trained Language Models' Parameter-Efficient Tuning Methods

论文作者

Zhang, Zhuo, Yang, Yuanhang, Dai, Yong, Qu, Lizhen, Xu, Zenglin

论文摘要

随着数据的越来越多的隐私问题,最近的研究使用联邦学习(FL)对隐私敏感的自然语言处理(NLP)任务取得了重大进展。许多文献表明,FL范式中完全微调的预训练的语言模型(PLM)可以减轻数据异质性问题,并通过集中式培训缩小性能差距。但是,大型PLM带来了FL系统的过度通信开销和本地模型适应成本的诅咒。为此,我们将各种参数效率调整(petuning)方法引入联合学习。具体而言,我们提供了FL中代表性PLMS调整方法的整体经验研究。实验结果涵盖了数据异质性水平,数据量表和不同的FL情况的分析。通过本地调整和全球汇总的轻质模型参数可以大大降低总体通信开销,同时在各种FL设置中保持可接受的性能。为了促进佛罗里达州垂体的研究,我们还开发了一个联合的调谐框架,该框架使从业人员可以方便地利用FL培训范式下的不同质po养方法。源代码可在\ url {https://github.com/iezhuozhuo/fedetuning/tree/deltatuning}获得。

With increasing privacy concerns on data, recent studies have made significant progress using federated learning (FL) on privacy-sensitive natural language processing (NLP) tasks. Much literature suggests fully fine-tuning pre-trained language models (PLMs) in the FL paradigm can mitigate the data heterogeneity problem and close the performance gap with centralized training. However, large PLMs bring the curse of prohibitive communication overhead and local model adaptation costs for the FL system. To this end, we introduce various parameter-efficient tuning (PETuning) methods into federated learning. Specifically, we provide a holistic empirical study of representative PLMs tuning methods in FL. The experimental results cover the analysis of data heterogeneity levels, data scales, and different FL scenarios. Overall communication overhead can be significantly reduced by locally tuning and globally aggregating lightweight model parameters while maintaining acceptable performance in various FL settings. To facilitate the research of PETuning in FL, we also develop a federated tuning framework FedPETuning, which allows practitioners to exploit different PETuning methods under the FL training paradigm conveniently. The source code is available at \url{https://github.com/iezhuozhuo/FedETuning/tree/deltaTuning}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源