论文标题
基于图像分割的无监督多个对象发现
Image Segmentation-based Unsupervised Multiple Objects Discovery
论文作者
论文摘要
无监督的对象发现旨在将对象定位在图像中,同时删除大多数基于深度学习的方法所需的注释的依赖。为了解决这个问题,我们为多个对象提出了一种完全无监督的自下而上的方法。提出的方法是两个阶段的框架。首先,通过使用自我监督的本地特征之间的内图像相似性来细分对象零件的实例。第二步合并并过滤对象零件以形成完整的对象实例。后者是由两个CNN模型执行的,它们在整个数据集中捕获对象的语义信息。我们证明,与现有的单个和多个对象发现方法相比,我们方法生成的伪标签提供了更好的精确核心权衡权衡。特别是,我们为无监督的类别对象检测和无监督的图像分割提供了最新结果。
Unsupervised object discovery aims to localize objects in images, while removing the dependence on annotations required by most deep learning-based methods. To address this problem, we propose a fully unsupervised, bottom-up approach, for multiple objects discovery. The proposed approach is a two-stage framework. First, instances of object parts are segmented by using the intra-image similarity between self-supervised local features. The second step merges and filters the object parts to form complete object instances. The latter is performed by two CNN models that capture semantic information on objects from the entire dataset. We demonstrate that the pseudo-labels generated by our method provide a better precision-recall trade-off than existing single and multiple objects discovery methods. In particular, we provide state-of-the-art results for both unsupervised class-agnostic object detection and unsupervised image segmentation.