论文标题
先验扩张的总和
Sums of transcendental dilates
论文作者
论文摘要
我们表明,有一个绝对常数$ c> 0 $,因此$ | a+λ\ cdot a | \ geq e^{c \ sqrt {\ log | a | a | a | a | a |}} | a |通过Konyagin和Laba的结构,最好是恒定的$ C $。
We show that there is an absolute constant $c>0$ such that $|A+λ\cdot A|\geq e^{c\sqrt{\log |A|}}|A|$ for any finite subset $A$ of $\mathbb{R}$ and any transcendental number $λ\in\mathbb{R}$. By a construction of Konyagin and Laba, this is best possible up to the constant $c$.