论文标题

先验扩张的总和

Sums of transcendental dilates

论文作者

Conlon, David, Lim, Jeck

论文摘要

我们表明,有一个绝对常数$ c> 0 $,因此$ | a+λ\ cdot a | \ geq e^{c \ sqrt {\ log | a | a | a | a | a |}} | a |通过Konyagin和Laba的结构,最好是恒定的$ C $。

We show that there is an absolute constant $c>0$ such that $|A+λ\cdot A|\geq e^{c\sqrt{\log |A|}}|A|$ for any finite subset $A$ of $\mathbb{R}$ and any transcendental number $λ\in\mathbb{R}$. By a construction of Konyagin and Laba, this is best possible up to the constant $c$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源