论文标题
Trudinger-Moser在平面域功能的任意能量的临界点
Critical points of arbitrary energy for the Trudinger-Moser functional in planar domains
论文作者
论文摘要
给定一个平滑界限的非合法域$ω\ subset \ mathbb {r}^2 $,我们证明了特鲁丁格 - 梅斯嵌入的正临界点的存在,这些点嵌入了任意的dirichlet能量。这是通过学位理论,尖锐的紧凑性估计和依赖庞加尔 - 霍普定理的拓扑论点来完成的。
Given a smoothly bounded non-contractible domain $Ω\subset \mathbb{R}^2$, we prove the existence of positive critical points of the Trudinger-Moser embedding for arbitrary Dirichlet energies. This is done via degree theory, sharp compactness estimates and a topological argument relying on the Poincaré-Hopf theorem.