论文标题
高斯流程的潜在变量建模,用于几个弹片时间序列预测
Gaussian Process Latent Variable Modeling for Few-shot Time Series Forecasting
论文作者
论文摘要
准确的时间序列预测对于优化资源分配,工业生产和城市管理至关重要,尤其是随着网络物理和物联网系统的增长。但是,诸如物理和生物学等领域的培训样本可用性有限,带来了重大挑战。现有模型难以捕获长期的依赖性,并在几个场景中明确地对多样化的元知识进行建模。为了解决这些问题,我们提出了METAGP,这是一种基于元学习的高斯流程潜在变量模型,该模型使用高斯过程内核函数来捕获长期依赖性并保持时间序列中的强相关性。我们还将内核关联搜索(KAS)作为一种新颖的元学习组件进行了明确的模型,从而提高了可解释性和预测准确性。我们研究了模拟和现实世界中的少数数据集的metagp,这表明它具有最先进的预测准确性。我们还发现,MetaGP可以捕获长期的依赖性并可以对元知识进行建模,从而为复杂的时间序列模式提供宝贵的见解。
Accurate time series forecasting is crucial for optimizing resource allocation, industrial production, and urban management, particularly with the growth of cyber-physical and IoT systems. However, limited training sample availability in fields like physics and biology poses significant challenges. Existing models struggle to capture long-term dependencies and to model diverse meta-knowledge explicitly in few-shot scenarios. To address these issues, we propose MetaGP, a meta-learning-based Gaussian process latent variable model that uses a Gaussian process kernel function to capture long-term dependencies and to maintain strong correlations in time series. We also introduce Kernel Association Search (KAS) as a novel meta-learning component to explicitly model meta-knowledge, thereby enhancing both interpretability and prediction accuracy. We study MetaGP on simulated and real-world few-shot datasets, showing that it is capable of state-of-the-art prediction accuracy. We also find that MetaGP can capture long-term dependencies and can model meta-knowledge, thereby providing valuable insights into complex time series patterns.