论文标题

使用级联残留卷积神经网络的视频分割学习

Video Segmentation Learning Using Cascade Residual Convolutional Neural Network

论文作者

Santos, Daniel F. S., Pires, Rafael G., Colombo, Danilo, Papa, João P.

论文摘要

视频分割由与前景移动对象相关的有意义区域的逐框选择过程组成。一些应用程序包括交通监控,人类跟踪,行动识别,有效的视频监视和异常检测。在这些应用中,很少会面临诸如天气条件,照明问题,阴影,微妙的动态背景运动以及伪装效果等挑战。在这项工作中,我们通过提出一种新颖的深度学习视频细分方法来解决此类缺陷,该方法将残留信息纳入前景检测学习过程中。主要目标是提供一种能够在灰度视频的情况下生成准确的前景检测的方法。对2014年更改检测和私人数据集Petrobrabraprobras进行的实验支持了针对某些最先进的视频细分技术的拟议方法的有效性,总体f-Measores $ \ Mathbf {0.95535} $和$ \\ MATHBF的PETECT数据集分别。这样的结果将提出的技术置于前三名最先进的视频分割方法中,除了比其顶部一方面的参数少七倍。

Video segmentation consists of a frame-by-frame selection process of meaningful areas related to foreground moving objects. Some applications include traffic monitoring, human tracking, action recognition, efficient video surveillance, and anomaly detection. In these applications, it is not rare to face challenges such as abrupt changes in weather conditions, illumination issues, shadows, subtle dynamic background motions, and also camouflage effects. In this work, we address such shortcomings by proposing a novel deep learning video segmentation approach that incorporates residual information into the foreground detection learning process. The main goal is to provide a method capable of generating an accurate foreground detection given a grayscale video. Experiments conducted on the Change Detection 2014 and on the private dataset PetrobrasROUTES from Petrobras support the effectiveness of the proposed approach concerning some state-of-the-art video segmentation techniques, with overall F-measures of $\mathbf{0.9535}$ and $\mathbf{0.9636}$ in the Change Detection 2014 and PetrobrasROUTES datasets, respectively. Such a result places the proposed technique amongst the top 3 state-of-the-art video segmentation methods, besides comprising approximately seven times less parameters than its top one counterpart.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源