论文标题

纠缠产生的尖锐的复杂性相变

Sharp complexity phase transitions generated by entanglement

论文作者

Ghosh, Soumik, Deshpande, Abhinav, Hangleiter, Dominik, Gorshkov, Alexey V., Fefferman, Bill

论文摘要

纠缠是负责模拟量子系统计算硬度的量子系统的物理特性之一。但是,尽管特定算法的运行时间(尤其是张量网络算法)明确取决于系统中的纠缠量,但尚不清楚这种连接是否更深,并且纠缠也会导致固有的,算法独立的复杂性。在这项工作中,我们将某些量子系统中存在的纠缠与模拟这些系统的计算复杂性联系起来。此外,我们完全表征纠缠和复杂性是系统参数的函数。具体而言,我们考虑模拟$ k $的单量测量的任务 - $ n $ Qubits上的常规图形状态。我们表明,由于规则性参数从$ 1 $增加到$ n-1 $,因此从纠缠低的轻松政权转变为$ k = 3 $的高纠缠较高的坚硬政权,再到$ k = n-3 $的易于且低纠缠的过渡。作为关键的技术结果,我们证明了低规律性和高规律性之间常规图状态的模拟复杂性是双重性的。

Entanglement is one of the physical properties of quantum systems responsible for the computational hardness of simulating quantum systems. But while the runtime of specific algorithms, notably tensor network algorithms, explicitly depends on the amount of entanglement in the system, it is unknown whether this connection runs deeper and entanglement can also cause inherent, algorithm-independent complexity. In this work, we quantitatively connect the entanglement present in certain quantum systems to the computational complexity of simulating those systems. Moreover, we completely characterize the entanglement and complexity as a function of a system parameter. Specifically, we consider the task of simulating single-qubit measurements of $k$--regular graph states on $n$ qubits. We show that, as the regularity parameter is increased from $1$ to $n-1$, there is a sharp transition from an easy regime with low entanglement to a hard regime with high entanglement at $k=3$, and a transition back to easy and low entanglement at $k=n-3$. As a key technical result, we prove a duality for the simulation complexity of regular graph states between low and high regularity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源