论文标题
混乱的粒子漂移运动中的分形和Wada逃脱盆地
Fractal and Wada escape basins in the chaotic particle drift motion in tokamaks
论文作者
论文摘要
$ {\ bf e} \ times {\ bf b} $ tokamaks中粒子的漂移运动提供了有关湍流驱动的异常传输的宝贵信息。漂移运动动力学的特征之一是存在混沌轨道的存在,指南中心可以在其中体验大规模的漂移。如果将一个或多个出口放置在该混沌轨道内,则相应的逃生盆地结构很复杂,实际上表现出分形结构。我们通过多种数值诊断来研究这些结构,这些诊断是为量化与分形逃生盆地相关的最终状态不确定性而定制的。我们通过不确定性指数法估算了逃生盆地边界维度,并通过盆地熵和盆地边界熵来量化最终状态不确定性。最后,我们描述了所谓的WADA属性,其中三个或更多的逃生盆地。使用网格方法对该属性进行定性和定量验证。
The ${\bf E}\times{\bf B}$ drift motion of particles in tokamaks provides valuable information on the turbulence-driven anomalous transport. One of the characteristic features of the drift motion dynamics is the presence of chaotic orbits for which the guiding center can experience large-scale drifts. If one or more exits are placed within that chaotic orbit, the corresponding escape basins structure is complicated and, indeed, exhibits fractal structures. We investigate those structures through a number of numerical diagnostics, tailored to quantify the final-state uncertainty related to the fractal escape basins. We estimate the escape basin boundary dimension through the uncertainty exponent method, and quantify final-state uncertainty by the basin entropy and the basin boundary entropy. Finally, we describe the so-called Wada property, for the case of three or more escape basins. This property is verified both qualitatively and quantitatively, using a grid approach.