论文标题

Hölder估算拔河游戏的估计,来自Krylov-Safonov规律性理论的$ 1 <P <2 $

Hölder estimate for a tug-of-war game with $1<p<2$ from Krylov-Safonov regularity theory

论文作者

Arroyo, Ángel, Parviainen, Mikko

论文摘要

我们提出了一个新版本的拔河游戏,以及与$ p $ -laplacian相关的相应动态编程原则,$ 1 <p <2 $。对于此版本,解决方案的渐近Hölder连续性可以直接从最近的Krylov-Safonov类型的规律性中得出。此外,可以在不使用边界校正的情况下获得可测量解决方案的存在。我们还建立了比较原则。

We propose a new version of the tug-of-war game and a corresponding dynamic programming principle related to the $p$-Laplacian with $1<p<2$. For this version, the asymptotic Hölder continuity of solutions can be directly derived from recent Krylov-Safonov type regularity results in the singular case. Moreover, existence of a measurable solution can be obtained without using boundary corrections. We also establish a comparison principle.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源