论文标题
磁共振指纹的高保真直接对比度合成
High-fidelity Direct Contrast Synthesis from Magnetic Resonance Fingerprinting
论文作者
论文摘要
磁共振指纹(MRF)是一种有效的定量MRI技术,可以从单个扫描中提取重要的组织和系统参数,例如T1,T2,B0和B1。该属性还使其对于回顾性合成的对比度加权图像具有吸引力。通常,可以通过旋转动力学模拟(即Bloch或扩展相位图模型)直接从参数图中直接合成对比度加权图像,例如T1加权,T2加权等。但是,这些方法通常由于映射,序列建模和数据采集的不完美而表现出伪影。在这里,我们提出了一种基于监督的学习方法,该方法直接从MRF数据中直接综合了对比度加权图像,而无需进行定量映射和旋转动力学模拟。为了实现我们的直接对比综合(DCS)方法,我们部署了条件生成对抗网络(GAN)框架,并提出一个多划分U-NET作为生成器。输入MRF数据用于直接合成T1加权,T2加权和流体侵入的反转恢复(FLAIR)图像,通过对配对MRF和基于目标自旋回声的对比度扫描进行的监督训练。与基于模拟的对比合成和先前的DCS方法相比,体内实验表现出了出色的图像质量,无论是在视觉上还是通过定量指标。我们还展示了我们训练有素的模型能够减轻通常在MRF重建中看到的流量和螺旋异位伪像的案例,因此更忠实地代表了常规的基于自旋回声的对比度加权图像。
Magnetic Resonance Fingerprinting (MRF) is an efficient quantitative MRI technique that can extract important tissue and system parameters such as T1, T2, B0, and B1 from a single scan. This property also makes it attractive for retrospectively synthesizing contrast-weighted images. In general, contrast-weighted images like T1-weighted, T2-weighted, etc., can be synthesized directly from parameter maps through spin-dynamics simulation (i.e., Bloch or Extended Phase Graph models). However, these approaches often exhibit artifacts due to imperfections in the mapping, the sequence modeling, and the data acquisition. Here we propose a supervised learning-based method that directly synthesizes contrast-weighted images from the MRF data without going through the quantitative mapping and spin-dynamics simulation. To implement our direct contrast synthesis (DCS) method, we deploy a conditional Generative Adversarial Network (GAN) framework and propose a multi-branch U-Net as the generator. The input MRF data are used to directly synthesize T1-weighted, T2-weighted, and fluid-attenuated inversion recovery (FLAIR) images through supervised training on paired MRF and target spin echo-based contrast-weighted scans. In-vivo experiments demonstrate excellent image quality compared to simulation-based contrast synthesis and previous DCS methods, both visually as well as by quantitative metrics. We also demonstrate cases where our trained model is able to mitigate in-flow and spiral off-resonance artifacts that are typically seen in MRF reconstructions and thus more faithfully represent conventional spin echo-based contrast-weighted images.