论文标题

使用原始变量的一般流体动力方程的新公式

A new formulation of general-relativistic hydrodynamic equations using primitive variables

论文作者

Servignat, Gaël, Novak, Jerome, Cordero-Carrión, Isabel

论文摘要

我们仅使用原始变量,在时空框架的3+1分解中介绍了在总体相对性中的完美流体的流体动力方程的推导。原始变量与保守的变量相反,如广泛使用的瓦伦西亚公式的相同流体动力方程式中所定义的。方程以协变量的方式得出,因此可以使用它们来描述完美流体的任何配置。派生后,将对方程进行数值测试。我们以球形对称的自我磨碎的紧凑对象的进化代码实现它们。该代码对度量和流体动力学都使用伪谱方法。首先,进行收敛测试,然后在有或没有围层近似的情况下恢复了多层径向模式的径向模式的频率,最后描述了我们代码在黑洞塌陷和迁移测试中的性能。测试的结果以及与参考的骨回落和中子星振荡法规的比较表明,我们的代码不仅可以处理非常强大的重力场,而且这种新的配方有助于在一般相对论中平滑流的流体流动模拟中获得大量的计算时间。

We present the derivation of hydrodynamical equations for a perfect fluid in General Relativity, within the 3+1 decomposition of spacetime framework, using only primitive variables. Primitive variables are opposed to conserved variables, as defined in the widely used Valencia formulation of the same hydrodynamical equations. The equations are derived in a covariant way, so that they can be used to describe any configuration of the perfect fluid. Once derived, the equations are tested numerically. We implement them in an evolution code for spherically symmetric self-gravitating compact objects. The code uses pseudospectral methods for both the metric and the hydrodynamics. First, convergence tests are performed, then the frequencies of radial modes of polytropes are recovered with and without the Cowling approximation, and finally the performance of our code in the black hole collapse and migration tests are described. The results of the tests and the comparison with a reference corecollapse and neutron star oscillations code suggests that not only our code can handle very strong gravitational fields, but also that this new formulation helps gaining a significant amount of computational time in hydrodynamical simulations of smooth flows in General Relativity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源