论文标题

旋转二维环陷阱中的超流体激发

Superfluid excitations in rotating two-dimensional ring traps

论文作者

Tomishiyo, Guilherme, Madeira, Lucas, Caracanhas, Mônica A.

论文摘要

我们研究了一个旋转的玻璃纤维凝结物,该冷凝水限制在环陷阱构型中,这些凝结物可以从墨西哥帽子和谐波振荡器电势近似的气泡陷阱限制开始。使用变分技术和扰动理论,我们通过改变颗粒间相互作用和原子云的角速度来确定该系统中的涡旋配置。我们发现,系统的相图具有用于相互作用参数的小正值的大竞争结构,并且中央涡流的电荷随旋转而增加。加强原子的相互作用会使大型竞争不稳定,并且会衰减多个单一充电的涡流,以晶格配置排列自己。我们还寻找可实现的方法来确定涡旋配置而不依赖吸收成像,因为在后者中并不总是可见结构。更具体地说,我们通过使用数值和分析预测来研究涡流分布如何影响凝结物的集体模式,并使用用于模式频率的sum-rule方法进行分析预测。这些结果揭示了重要的特征,以表征实验中的宏观和涡流晶格转变。

We studied a rotating Bose-Einstein condensate confined in ring trap configurations that can be produced starting with a bubble trap confinement, approximated by a Mexican hat and shifted harmonic oscillator potentials. Using a variational technique and perturbation theory, we determined the vortex configurations in this system by varying the interparticle interaction and the angular velocity of the atomic cloud. We found that the phase diagram of the system has macrovortex structures for small positive values of the interaction parameter, and the charge of the central vortex increases with rotation. Strengthening the atomic interaction makes the macrovortex unstable, and it decays into multiple singly-charged vortices that arrange themselves in a lattice configuration. We also look for experimentally realizable methods to determine the vortex configuration without relying upon absorption imaging since the structures are not always visible in the latter. More specifically, we study how the vortex distribution affects the collective modes of the condensate by solving the Gross-Pitaevskii equation numerically and by analytical predictions using the sum-rule approach for the frequencies of the modes. These results reveal important signatures to characterize the macrovortices and vortex lattice transitions in the experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源