论文标题

发现具有长期依赖性的过程模型,同时提供保证和过滤不经常的行为模式

Discovering Process Models With Long-Term Dependencies While Providing Guarantees and Filtering Infrequent Behavior Patterns

论文作者

Mannel, Lisa Luise, van der Aalst, Wil M. P.

论文摘要

在过程发现中,目标是为给定的事件日志找到描述基础过程的模型。虽然可以通过多种方式表示过程模型,但培养皿中的培养皿构成了一种理论上探索的描述语言,因此经常被使用。在本文中,我们扩展了EST-Miner过程发现算法。 EST-Miner计算一组Petri Net位置,这些位置与给定噪声阈值所示的给定事件日志所描述的一定比例相对于一定的行为拟合。它使用基于令牌的重播来评估所有可能的候选场所。为每个位置确定可重播痕迹的集合,即这些集合不需要一致。这允许该算法从仅在某些痕迹中发生的不频繁的行为模式抽象。但是,当将位置连接到相应标记的唯一标记的过渡中时,将其组合到培养皿网中时,所得网可以通过所有插入的位置的组合允许的事件日志中的那些痕迹重新播放。因此,在不考虑其综合效果的情况下,插入位置,可能会导致petri网的僵局和低健身性。在本文中,我们探讨了EST-Miner的改编,旨在选择一部分位置,以便由此产生的Petri Net保证可确定的最小健身性,同时保持相对于输入事件日志的高精度。此外,当前的位置评估技术倾向于阻止不经常的活动标签的执行。因此,引入并彻底研究了精致的健身指标。在我们的实验中,我们使用真实和人工事件日志来评估和比较各种位置选择策略的影响,并将健身评估指标放在返回的Petri Net上。

In process discovery, the goal is to find, for a given event log, the model describing the underlying process. While process models can be represented in a variety of ways, Petri nets form a theoretically well-explored description language and are therefore often used. In this paper, we extend the eST-Miner process discovery algorithm. The eST-Miner computes a set of Petri net places which are considered to be fitting with respect to a certain fraction of the behavior described by the given event log as indicated by a given noise threshold. It evaluates all possible candidate places using token-based replay. The set of replayable traces is determined for each place in isolation, i.e., these sets do not need to be consistent. This allows the algorithm to abstract from infrequent behavioral patterns occurring only in some traces. However, when combining places into a Petri net by connecting them to the corresponding uniquely labeled transitions, the resulting net can replay exactly those traces from the event log that are allowed by the combination of all inserted places. Thus, inserting places one-by-one without considering their combined effect may result in deadlocks and low fitness of the Petri net. In this paper, we explore adaptions of the eST-Miner, that aim to select a subset of places such that the resulting Petri net guarantees a definable minimal fitness while maintaining high precision with respect to the input event log. Furthermore, current place evaluation techniques tend to block the execution of infrequent activity labels. Thus, a refined place fitness metric is introduced and thoroughly investigated. In our experiments we use real and artificial event logs to evaluate and compare the impact of the various place selection strategies and place fitness evaluation metrics on the returned Petri net.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源