论文标题

修改后的schrieffer中的递归关系和量子本素算法 - 哈伯德二聚体的沃尔夫转换

Recursive relations and quantum eigensolver algorithms within modified Schrieffer--Wolff transformations for the Hubbard dimer

论文作者

Marécat, Quentin, Senjean, Bruno, Saubanère, Matthieu

论文摘要

我们得出了Schrieffer-Wolff(SW)的转换的递归关系。虽然将标准的SW转换设置为仅在扰动的第一顺序中对转化的哈密顿量进行阻止,但我们从递归关系中推断出两种类型的变性或迭代的修改类型,该方法,该方法,甚至对同质案例的方法,即在扰动的无限顺序下进行均匀的块 - 平衡。然后,修改后的SW单位转换用于设计适合嘈杂和耐断层时代的测试量子算法。这项工作铺平了朝着设计的替代量子算法设计的道路。

We derive recursive relations for the Schrieffer--Wolff (SW) transformation applied to the half-filled Hubbard dimer. While the standard SW transformation is set to block-diagonalize the transformed Hamiltonian solely at the first order of perturbation, we infer from recursive relations two types of modifications, variational or iterative, that approach, or even enforce for the homogeneous case, the desired block-diagonalization at infinite order of perturbation. The modified SW unitary transformations are then used to design an test quantum algorithms adapted to the noisy and fault-tolerant era. This work paves the way toward the design of alternative quantum algorithms for the general Hubbard Hamiltonian.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源