论文标题
高功率气旋:超出标准模型物理,计算和医疗应用之间的桥梁
High Power Cyclotrons: The Bridge Between Beyond the Standard Model Physics, Computation, and Medical Applications
论文作者
论文摘要
Isodar Cyclotron是一个60 MEV的回旋子,设计用于输出10mA的质子,以便成为中微子实验的驱动器。耦合ISODAR系统与kiloton中微子检测器产生的高通量将提供无菌中微子的排除搜索搜索,涵盖了短基线实验指示的异常区域。同时,高功率靶标和数可尔顿检测器的耦合允许研究暗物质候选物,即轴突样颗粒。我们已经表明,ISODAR目标内的核激发创造了独特的机会,可以用附近的Kiloton检测器检测轴并检测一能峰。除此之外,ISODAR回旋子产生的高功率可用于粒子物理以外的应用。 Isodar Cyclotron加速并提取H $ _2^+$,它允许光束下游分开,这是一种多功能且重要的开发,可以减轻为医疗同位素社区产生高功率目标的问题。本文提出了一项针对某些高度需要的医疗同位素(包括AC-225)的目前生产率高于数量级的提议。 在本论文中,我们报告了满足这些要求的多孔离子源的结果,并产生了创纯度纯度,低发射率h $ _2^+$当前的水平。第二个是设计一个射频四极杆(RFQ),该四极杆将允许在注射前轻轻束高电流。这是轴向直接注射与紧凑型回旋子的首次使用。本文报告了机器学习到RFQ设计的首次应用。这些工具使Isodar Cyclotron所需的高电流能够对加速器,医疗和物理社区产生重要影响。
The IsoDAR cyclotron is a 60 MeV cyclotron designed to output 10mA of protons in order to be a driver for a neutrino experiment. Coupling the high flux generated by the IsoDAR system with a kiloton neutrino detector will provide sterile neutrino exclusion searches covering anomalous regions indicated by short baseline experiments. Simultaneously, the coupling of a high power target and kiloton detector allows for the investigation of dark matter candidates, namely axion-like particles. We have shown that nuclear excitations within the IsoDAR target create a unique opportunity to produce axions and detect monoenergetic peaks with the nearby kiloton detector. Beyond this, the high power produced by the IsoDAR cyclotron can be used for applications beyond particle physics. The IsoDAR cyclotron accelerates and extracts H$_2^+$, which allows the beam to be split downstream, a versatile and important development to alleviate the problem of producing high-power targets for the medical isotope community. This thesis presents a proposal for production of an more than an order of magnitude higher rates than are available at present for certain highly-need medical isotopes, including Ac-225. In this thesis, we report results from a multi-cusp ion source that meets these requirements and produces a record level of high purity, low emittance H$_2^+$ current. The second has been to design a radio-frequency quadrupole (RFQ) that will allow for gentle bunching of the high current before injection. This is the first use of axial direct injection with a compact cyclotron. This thesis reports the first application of machine learning to the RFQ design. These tools enable the high currents required by IsoDAR cyclotron, leading to important impact on the accelerator, medical, and physics communities.