论文标题

推荐解决量子计算解决优化问题的解决方案路径

Recommending Solution Paths for Solving Optimization Problems with Quantum Computing

论文作者

Poggel, Benedikt, Quetschlich, Nils, Burgholzer, Lukas, Wille, Robert, Lorenz, Jeanette Miriam

论文摘要

解决量子计算的现实世界优化问题需要在有关公式,编码,算法和硬件的大量选项之间进行选择。寻找良好的解决方案路径对于最终用户和研究人员都具有挑战性。我们提出了一个旨在识别和建议最佳解决方案路径的框架。这引入了一个新颖的抽象层,该层是使最终用户可以访问量子辅助的解决方案技术所需的,而无需更深入了解量子技术。可以以模块化的方式集成最新的混合算法,编码和分解技术,并使用特定于问题的性能指标进行评估。同样,开发了用于变异量子算法的图形分析的工具。还可以包括经典,容错的量子和量子启发的方法,以确保进行公平的比较,从而产生有用的解决方案路径。我们在选定的一组选项上演示和验证我们的方法,并说明其在电容车辆路由问题(CVRP)上的应用。我们还确定了至关重要的要求以及在量子辅助解决方案工作流中提出的自动化层的主要设计挑战,以实现优化问题。

Solving real-world optimization problems with quantum computing requires choosing between a large number of options concerning formulation, encoding, algorithm and hardware. Finding good solution paths is challenging for end users and researchers alike. We propose a framework designed to identify and recommend the best-suited solution paths. This introduces a novel abstraction layer that is required to make quantum-computing-assisted solution techniques accessible to end users without requiring a deeper knowledge of quantum technologies. State-of-the-art hybrid algorithms, encoding and decomposition techniques can be integrated in a modular manner and evaluated using problem-specific performance metrics. Equally, tools for the graphical analysis of variational quantum algorithms are developed. Classical, fault tolerant quantum and quantum-inspired methods can be included as well to ensure a fair comparison resulting in useful solution paths. We demonstrate and validate our approach on a selected set of options and illustrate its application on the capacitated vehicle routing problem (CVRP). We also identify crucial requirements and the major design challenges for the proposed automation layer within a quantum-assisted solution workflow for optimization problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源