论文标题

神经布模拟

Neural Cloth Simulation

论文作者

Bertiche, Hugo, Madadi, Meysam, Escalera, Sergio

论文摘要

我们通过在基于物理的模拟中启发了无监督的深度学习,为服装动画问题提供了一个一般框架。文献中的现有趋势已经探索了这种可能性。但是,这些方法无法处理布动力学。在这里,我们提出了第一种能够不受限制地学习逼真的布动力学的方法,此后是神经布模拟的一般配方。实现此目的的关键是将现有的优化方案从基于模拟的方法论到深度学习的现有优化方案。然后,分析问题的性质,我们设计了一个架构,能够通过设计自动解开静态和动态的布子空​​间。我们将展示这如何改善模型性能。此外,这开辟了一种新型运动增强技术的可能性,从而大大改善了概括。最后,我们表明它还允许控制预测中的运动水平。对于艺术家来说,这是一个有用的,从未见过的工具。我们提供了对问题的详细分析,以建立神经布模拟的基础,并指导对该领域细节的未来研究。

We present a general framework for the garment animation problem through unsupervised deep learning inspired in physically based simulation. Existing trends in the literature already explore this possibility. Nonetheless, these approaches do not handle cloth dynamics. Here, we propose the first methodology able to learn realistic cloth dynamics unsupervisedly, and henceforth, a general formulation for neural cloth simulation. The key to achieve this is to adapt an existing optimization scheme for motion from simulation based methodologies to deep learning. Then, analyzing the nature of the problem, we devise an architecture able to automatically disentangle static and dynamic cloth subspaces by design. We will show how this improves model performance. Additionally, this opens the possibility of a novel motion augmentation technique that greatly improves generalization. Finally, we show it also allows to control the level of motion in the predictions. This is a useful, never seen before, tool for artists. We provide of detailed analysis of the problem to establish the bases of neural cloth simulation and guide future research into the specifics of this domain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源