论文标题
弯曲功能和强烈规则的图
Bent functions and strongly regular graphs
论文作者
论文摘要
弯曲功能的家族是一类已知的布尔功能,在密码学中非常重要。在$ \ mathbb {z} _ {2}^{n} $上定义的cayley图是弯曲函数的支持,是一个非常规则的图形$ srg(v,kλ,μ)$,$λ=μ$。在本说明中,我们列出了此类Cayley图的参数。此外,在$(n,m)$ - 弯曲功能$ f =(f_1,\ ldots,f_m)$上给出了条件,涉及其组件$ f_i $的支持及其$ n $ ary-ary-ary对称差异。
The family of bent functions is a known class of Boolean functions, which have a great importance in cryptography. The Cayley graph defined on $\mathbb{Z}_{2}^{n}$ by the support of a bent function is a strongly regular graph $srg(v,kλ,μ)$, with $λ=μ$. In this note we list the parameters of such Cayley graphs. Moreover, it is given a condition on $(n,m)$-bent functions $F=(f_1,\ldots,f_m)$, involving the support of their components $f_i$, and their $n$-ary symmetric differences.