论文标题

跨量子相变的可调Yu-Shiba-Rusinov状态的通用缩放

Universal scaling of tunable Yu-Shiba-Rusinov states across the quantum phase transition

论文作者

Huang, Haonan, Karan, Sujoy, Padurariu, Ciprian, Kubala, Björn, Cuevas, Juan Carlos, Ankerhold, Joachim, Kern, Klaus, Ast, Christian R.

论文摘要

量子磁杂质引起了许多现象,近年来引起了巨大的研究兴趣。在正常金属上,磁杂质会产生相关驱动的围绕效应。在超导体上,结合状态在超导差距内出现,称为Yu-Shiba-Rusinov(YSR)状态。从理论上讲,量子杂质问题已通过数值重量化群(NRG)理论成功解决,其中近托和YSR物理学被证明是统一的,并且普遍归一化的YSR能量尺度,围绕围栏温度除以超导间隙。但是,在实验上,近藤温度通常是从现象学方法中提取的,这会导致明显的不确定性,无法正确考虑磁场。使用10MK的扫描隧道显微镜,我们将磁场应用于钒尖端上的几个YSR杂质,以揭示近藤效应,并使用NRG使用显微镜单个杂质Anderson模型,以将近神光谱拟合到磁场中,并准确地提取相应的近距离温度。由于尖端进近的原子力的变化,一些YSR状态在量子相变(QPT)上移动,从而产生了连续的通用缩放,具有定量精度的量子自旋1/2杂质。

Quantum magnetic impurities give rise to a wealth of phenomena attracting tremendous research interest in recent years. On a normal metal, magnetic impurities generate the correlation-driven Kondo effect. On a superconductor, bound states emerge inside the superconducting gap called the Yu-Shiba-Rusinov (YSR) states. Theoretically, quantum impurity problems have been successfully tackled by numerical renormalization group (NRG) theory, where the Kondo and YSR physics are shown to be unified and the normalized YSR energy scales universally with the Kondo temperature divided by the superconducting gap. However, experimentally the Kondo temperature is usually extracted from phenomenological approaches, which gives rise to significant uncertainties and cannot account for magnetic fields properly. Using scanning tunneling microscopy at 10mK, we apply a magnetic field to several YSR impurities on a vanadium tip to reveal the Kondo effect and employ the microscopic single impurity Anderson model with NRG to fit the Kondo spectra in magnetic fields accurately and extract the corresponding Kondo temperature unambiguously. Some YSR states move across the quantum phase transition (QPT) due to the changes in atomic forces during tip approach, yielding a continuous universal scaling with quantitative precision for quantum spin-1/2 impurities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源