论文标题
具有有限区域的光滑非碰撞双曲线表面的点光谱
The Point Spectrum of Smooth Noncompact Hyperbolic Surfaces with Finite Area
论文作者
论文摘要
我们在有限区域的平滑非脉冲双曲表面的紧凑子集上构建了一系列边界价值问题。我们证明,与这些边界价值问题相关的片状形式是稳定的,并且在尖端消失的连续函数上保持一致。我们还为某个Schrodinger操作员的Dirichlet到Neumann操作员的符号扩展提供了明确的形式。可以使用我们在本文中提供的公式来快速计算该差异到Neumann操作员的扩展中出现的符号。
We construct a sequence of boundary value problems on compact subsets of smooth noncompact hyperbolic surfaces of finite area. We prove that the sesquilinear forms associated to these boundary value problems are stable as well as consistent at continuous functions which vanish at cusps. We also give an explicit form for the symbol expansion of the Dirichlet-to-Neumann operator of a certain Schrodinger operator. The symbols appearing in the expansion of this Dirichlet-to-Neumann operator can be calculated quickly by a computer using the formulas we provide in this paper.