论文标题
随机垂直温度曲线的准渗透气氛中的声学波浪
Acoustic-gravity waves in quasi-isothermal atmospheres with a random vertical temperature profile
论文作者
论文摘要
我们研究了在垂直温度剖面较弱的随机添加的情况下,在准等热气氛中研究了声学波浪,这在高度大于$ \ sim 200 $ km的高度下模拟了地球的真实气氛。所得随机方程在Bourret近似中关闭。获得的平均绿色功能的极点确定了声学波的广义分散关系。考虑了两种特殊情况:以白噪声形式($δ$相关)的随机不均匀性和相反的情况的相反情况。在这两种情况下,都可以预测声学波浪的不稳定性,并确定相应的不稳定性生长速率。
We study acoustic-gravity waves in a quasi-isothermal atmosphere in the presence of a weak random addition to the vertical temperature profile, which simulates the real atmosphere of the Earth at altitudes greater than $\sim 200$ km. The resulting stochastic equation is closed in the Bourret approximation. The poles of the obtained mean Green's function determine the generalized dispersion relation for acoustic-gravity waves. Two particular cases are considered: random inhomogeneities in the form of white noise ($δ$-correlated in space) and the opposite case of a $δ$-shaped noise spectrum. In both cases, instability of acoustic-gravity waves is predicted and the corresponding instability growth rates are determined.