论文标题
局部恒定振动和曲率的阳性
Locally Constant Fibrations and Positivity of Curvature
论文作者
论文摘要
在有限的étale盖上,任何光滑的复杂的投影品种$ x $都带有nef反典型的捆绑包,这是一个$ k $ - $ k $的品种,具有局部恒定的过渡功能。我们证明,通过证明在$ k $ trievial的品种上具有局部恒定过渡功能的任何投射纤维束都具有NEF反典型的捆绑包,这是最佳的。此外,我们对各种结构理论进行了补充,该结构理论的切线束接收了一个奇特的冬至曲率度量。
Up to finite étale cover, any smooth complex projective variety $X$ with nef anti-canonical bundle is a holomorphic fibre bundle over a $K$-trivial variety with locally constant transition functions. We show that this result is optimal by proving that any projective fibre bundle with locally constant transition functions over a $K$-trivial variety has a nef anti-canonical bundle. Moreover, we complement some results on the structure theory of varieties whose tangent bundle admits a singular hermitean metric of positive curvature.