论文标题
限制在线性链中的自旋速度的模块化纳米磁性设计
Modular nanomagnet design for spin qubits confined in a linear chain
论文作者
论文摘要
片上的微型磁铁可以在电子旋转矩阵上进行电控制的量子门。就提供足够大的驾驶梯度和个人寻址性而言,将该概念扩展到大量量子位是具有挑战性的。在这里,我们提出了一种设计,旨在驱动在线性链中排列并强烈限制在链条向链的方向上的旋转Qubits。纳米磁体横向放置在Qubit链的一侧,每两个量子台一个纳米磁铁。单个磁体是“ U”形的,使得磁形各向异性也使磁化物交替地朝量子链和固定链,即使沿量子链施加了外部磁场。纵向和横向流浪场组件可作为可寻址性和驾驶场。使用微磁模拟,我们计算驾驶和脱位速率以及相应的量子质量因子。该概念通过在硅底物上制造的Fe纳米磁体的自旋扫描电子显微镜进行了验证,与微磁模拟发现了极好的一致性。在我们的方法中,满足了可扩展自旋量子置量设计所需的几个功能:强驾驶和弱倾斜梯度,串扰降低和在低外部磁场处的操作。
On-chip micromagnets enable electrically controlled quantum gates on electron spin qubits. Extending the concept to a large number of qubits is challenging in terms of providing large enough driving gradients and individual addressability. Here we present a design aimed at driving spin qubits arranged in a linear chain and strongly confined in directions lateral to the chain. Nanomagnets are placed laterally to one side of the qubit chain, one nanomagnet per two qubits. The individual magnets are "U"-shaped, such that the magnetic shape anisotropy orients the magnetization alternately towards and against the qubit chain even if an external magnetic field is applied along the qubit chain. The longitudinal and transversal stray field components serve as addressability and driving fields. Using micromagnetic simulations we calculate driving and dephasing rates and the corresponding qubit quality factor. The concept is validated with spin-polarized scanning electron microscopy of Fe nanomagnets fabricated on silicon substrates, finding excellent agreement with micromagnetic simulations. Several features required for a scalable spin qubit design are met in our approach: strong driving and weak dephasing gradients, reduced crosstalk and operation at low external magnetic field.