论文标题
功能图计划的基础:图形转换控制代数(GTA)
A Foundation for Functional Graph Programs: The Graph Transformation Control Algebra (GTA)
论文作者
论文摘要
图形转换(GT)系统的应用通常需要可用于指导GT过程的控制结构。大多数现有的GT工具都遵循状态计算模型,当应用GT规则时,单个图被重复修改为“就地”。在此类工具中的控制结构的实现并不微不足道。普遍的挑战包括处理统治应用程序固有的非确定性和执行GTS组成时的交易限制,特别是原子性和隔离。相关的交易机制和规则应用搜索算法的复杂性(例如,回溯)使这些控制结构的正式基础的定义变得复杂。与这些状态方法相比,功能图的重写提出了一个更简单的(无状态)计算模型,该模型简化了(功能)GT控制结构的形式基础的定义。在本文中,我们提出了“图形转换控制代数”(GTA)作为这样的基础。 GTA已被用作(功能)GT工具“葡萄藤”中实现控制结构的形式基础。
Applications of graph transformation (GT) systems often require control structures that can be used to direct GT processes. Most existing GT tools follow a stateful computational model, where a single graph is repeatedly modified "in-place" when GT rules are applied. The implementation of control structures in such tools is not trivial. Common challenges include dealing with the non-determinism inherent to rule application and transactional constraints when executing compositions of GTs, in particular atomicity and isolation. The complexity of associated transaction mechanisms and rule application search algorithms (e.g., backtracking) complicates the definition of a formal foundation for these control structures. Compared to these stateful approaches, functional graph rewriting presents a simpler (stateless) computational model, which simplifies the definition of a formal basis for (functional) GT control structures. In this paper, we propose the "Graph Transformation control Algebra" (GTA) as such a foundation. The GTA has been used as the formal basis for implementing the control structures in the (functional) GT tool "GrapeVine".