论文标题
ILP问题的基于图的规范和自动结构
Graph-Based Specification and Automated Construction of ILP Problems
论文作者
论文摘要
在模型驱动的软件工程(MDSE)社区中,在基于图的模型(例如,模式匹配(PM)和图形转换(GT))和Integer线性编程(ILP)上运行的技术的组合是常见的情况,因为ILP求解器为解决方案的实力性问题提供了强大的方法来实现全局的解决方案,并在实现全球求解方面提供了一种强大的方法。但是,从更抽象的问题描述中设计和指定复杂的优化问题可能是一项具有挑战性的任务。设计师必须是特定问题域以及ILP优化域中的专家,以将给定问题转化为有效的ILP问题。通常,特定于域的ILP问题生成器由专家手工制作,以避免为问题域的每个新实例手动指定新的ILP问题。不幸的是,编写ILP问题生成器的任务是一种练习,必须重复每个新场景,工具和方法。为此,我们介绍了GIPS(基于图的ILP问题规范工具)框架,该框架简化了ILP问题生成器的开发,用于基于图形的优化问题和称为GIPSL(基于图的ILP问题规范语言)的新的特定领域特异性语言(DSL),从而在抽象级别上集成了GT和ILP问题。我们的方法使用GIPSL规范作为自动推导特定应用程序域ILP问题生成器的起点。第一个实验表明,派生的ILP问题生成器可以与ILP专家开发的手工制作的程序竞争。
In the Model-Driven Software Engineering (MDSE) community, the combination of techniques operating on graph-based models (e.g., Pattern Matching (PM) and Graph Transformation (GT)) and Integer Linear Programming (ILP) is a common occurrence, since ILP solvers offer a powerful approach to solve linear optimization problems and help to enforce global constraints while delivering optimal solutions. However, designing and specifying complex optimization problems from more abstract problem descriptions can be a challenging task. A designer must be an expert in the specific problem domain as well as the ILP optimization domain to translate the given problem into a valid ILP problem. Typically, domain-specific ILP problem generators are hand-crafted by experts, to avoid specifying a new ILP problem by hand for each new instance of a problem domain. Unfortunately, the task of writing ILP problem generators is an exercise, which has to be repeated for each new scenario, tool, and approach. For this purpose, we introduce the GIPS (Graph-Based ILP Problem Specification Tool) framework that simplifies the development of ILP problem generators for graph-based optimization problems and a new Domain-Specific Language (DSL) called GIPSL (Graph-Based ILP Problem Specification Language) that integrates GT and ILP problems on an abstract level. Our approach uses GIPSL specifications as a starting point to derive ILP problem generators for a specific application domain automatically. First experiments show that the derived ILP problem generators can compete with hand-crafted programs developed by ILP experts.