论文标题
来自泊松均匀空间的非交通空间的一般方法:应用于(a)DS和Poincaré
A general approach to noncommutative spaces from Poisson homogeneous spaces: Applications to (A)dS and Poincaré
论文作者
论文摘要
在这项贡献中,我们提出了一项一般程序,该程序允许以量子群不变性的形式构建非交通空间,以量化其相关的共同体泊松泊松同质空间,这些空间来自核的bialgebra结构。通过以(3+1)d(a)ds和poincaré二氧化液的bialgebras获得明确形式的几个非交通空间来说明该方法。特别是,我们回顾了$κ$ -Minkowski和$κ$ - (a)DS空间的构建。此外,我们介绍了保留量子Lorentz亚组的所有非交换性Minkowski和(a)DS空间。最后,还显示相同的设置可用于构建类似时间的三个可能的6d $κ$-Poincaré空间。还解决了一些开放问题。
In this contribution we present a general procedure that allows the construction of noncommutative spaces with quantum group invariance as the quantization of their associated coisotropic Poisson homogeneous spaces coming from a coboundary Lie bialgebra structure. The approach is illustrated by obtaining in an explicit form several noncommutative spaces from (3+1)D (A)dS and Poincaré coisotropic Lie bialgebras. In particular, we review the construction of the $κ$-Minkowski and $κ$-(A)dS spacetimes in terms of the cosmological constant $Λ$. Furthermore, we present all noncommutative Minkowski and (A)dS spacetimes that preserved a quantum Lorentz subgroup. Finally, it is also shown that the same setting can be used to construct the three possible 6D $κ$-Poincaré spaces of time-like. Some open problems are also addressed.