论文标题
地图跳跃的映射方法
A mapping approach to surface hopping
论文作者
论文摘要
我们提出了一种非绝热的经典轨迹方法,该方法在最少的开关表面跳跃(FSSH)和准经典映射动力学之间提供了两全其美。这种映射方法的表面跳跃方法(MASH)像FSSH一样在活跃的绝热电位能表面传播核。但是,与FSSH不同,主动表面之间的过渡是确定性的,并且当电子映射变量在电子相空间的指定区域之间演变时发生。这确保了整个动力学的主动表面和电子自由度之间的内部一致性。 Mash是从精确的量子力学中严格衍生的,这是量子古典liouville方程(QCL)的限制,从而导致动量恢复和沮丧的啤酒花的独特处方。因此,原则上可以使用量子跳跃程序来系统地收集结果的准确性。此跳跃过程还提供了一个严格的框架,用于得出类似于FSSH建议的近似破裂校正。我们使用MASH模拟各种模型系统中的非绝热动态,并表明它始终以相当的计算成本产生比FSSH更准确的结果。
We present a nonadiabatic classical-trajectory approach that offers the best of both worlds between fewest-switches surface hopping (FSSH) and quasiclassical mapping dynamics. This mapping approach to surface hopping (MASH) propagates the nuclei on the active adiabatic potential-energy surface, like in FSSH. However, unlike in FSSH, transitions between active surfaces are deterministic and occur when the electronic mapping variables evolve between specified regions of the electronic phase space. This guarantees internal consistency between the active surface and the electronic degrees of freedom throughout the dynamics. MASH is rigorously derivable from exact quantum mechanics, as a limit of the quantum-classical Liouville equation (QCLE), leading to a unique prescription for momentum rescaling and frustrated hops. Hence, a quantum-jump procedure can in principle be used to systematically converge the accuracy of the results to that of the QCLE. This jump procedure also provides a rigorous framework for deriving approximate decoherence corrections similar to those proposed for FSSH. We apply MASH to simulate the nonadiabatic dynamics in various model systems and show that it consistently produces more accurate results than FSSH, at a comparable computational cost.