论文标题

有效抽样,以实现时间变化的扩散模型中实现的方差估计

Efficient Sampling for Realized Variance Estimation in Time-Changed Diffusion Models

论文作者

Dimitriadis, Timo, Halbleib, Roxana, Polivka, Jeannine, Rennspies, Jasper, Streicher, Sina, Wolter, Axel Friedrich

论文摘要

本文分析了实现方差(RV)估计量在内在时间中抽样室内回报的好处。从理论上讲,我们在有限样本中表明,根据允许的采样信息,RV估计器在达到时间采样的情况下最有效,每当价格通过预确定的阈值变化时,或在实现业务时间的新概念下,根据观察到的贸易和估计的tick虫的组合样本,该价格是在实现商业时间的新概念下。该分析基于这样的假设,即资产价格遵循的扩散,该扩散会随着跳跃过程的时间而变化,该过程分别对交易时间进行建模。这提供了一个灵活的模型,该模型允许杠杆规格和霍克斯型跳跃过程,并单独捕获经验上变化的交易强度和tick差异过程,这与解散采样方案的驱动力特别相关。广泛的模拟证实了我们的理论结果,并表明,对于低水平的噪声,达到时间采样仍然优越,而对于提高噪声水平,实现的业务时间成为经验上最有效的采样方案。库存数据的应用提供了使用这些内在抽样方案来构建更有效的RV估计器以及改善预测性能的经验证据。

This paper analyzes the benefits of sampling intraday returns in intrinsic time for the realized variance (RV) estimator. We theoretically show in finite samples that depending on the permitted sampling information, the RV estimator is most efficient under either hitting time sampling that samples whenever the price changes by a pre-determined threshold, or under the new concept of realized business time that samples according to a combination of observed trades and estimated tick variance. The analysis builds on the assumption that asset prices follow a diffusion that is time-changed with a jump process that separately models the transaction times. This provides a flexible model that allows for leverage specifications and Hawkes-type jump processes and separately captures the empirically varying trading intensity and tick variance processes, which are particularly relevant for disentangling the driving forces of the sampling schemes. Extensive simulations confirm our theoretical results and show that for low levels of noise, hitting time sampling remains superior while for increasing noise levels, realized business time becomes the empirically most efficient sampling scheme. An application to stock data provides empirical evidence for the benefits of using these intrinsic sampling schemes to construct more efficient RV estimators as well as for an improved forecast performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源