论文标题

Bianisotropic培养基中线性麦克斯韦方程的有限元方法允许极化场和磁电流

Finite Element Methods for Linear Maxwell's Equations in Bianisotropic Media Permitting Polarization Fields and Magnetic Currents

论文作者

Fernando, Tharindu, Licht, Martin, Holst, Michael

论文摘要

我们以广义形式回顾了3D Bianisotropic介质的Maxwell方程和本构关系:我们考虑所有四个变量并允许非零极化或磁化,以及非零的非零磁电荷或电流。在讨论了一般边界条件之后,我们就电场和磁场引入了3D双异构介质中线性麦克斯韦方程的时间谐波变异公式。我们使用第一类的卷曲构造的nédélec边缘元素展示了我们变异配方的有限元近似。数值示例说明了该方法的收敛性。

We review Maxwell's equations and constitutive relations for 3D bianisotropic media in a generalized form: we consider all four variables and allow for nonzero polarization or magnetization, and also nonzero nonzero magnetic charge or current. After a discussion of general boundary conditions, we introduce a time-harmonic variational formulation of linear Maxwell's equations within 3D bianisotropic media in terms of the electric and magnetic fields. We showcase a finite element approximation of our variational formulation, using curl-conforming Nédélec edge elements of the first kind. Numerical examples illustrate the convergence of the method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源