论文标题
相对Cohen-MaCaulay模块在环同态下
Relative Cohen-Macaulay modules under ring homomorphisms
论文作者
论文摘要
让$ r $成为具有身份(不一定是本地)和$ \ $ $ r $的$ \ frak a $的noetherian戒指。我们研究了一些$ \ frak的某些类别的不变性,一个$ relative cohen-macaulay模块在纯戒指同构和有限平坦尺寸的环形同态下的不变性。我们的结果扩展了有关同源模块的现有文献的几个结果。
Let $R$ be a commutative Noetherian ring with identity (not necessarily local) and $\frak a$ a proper ideal of $R$. We study the invariance of some classes of $\frak a$-relative Cohen-Macaulay modules under pure ring homomorphisms and ring homomorphisms of finite flat dimension. Our results extend several results in the existing literature on homological modules.