论文标题

使用地球物理卫星数据的社区检测进行预测滑坡

Forecasting landslides using community detection on geophysical satellite data

论文作者

Desai, Vrinda, Fazelpour, Farnaz, Handwerger, Alexander L., Daniels, Karen E.

论文摘要

由于极端天气条件(例如降水量繁重),天然山坡可能会急剧失败。由于降雨和孔隙水压力在深度变化之间,甚至几天到几年的慢动作,这些斜率故障可能在干旱的一天发生。尽管有时在回顾性中显而易见,但预测从逐渐变形(蠕变)到失控故障的突然过渡仍然很具有挑战性。我们使用网络科学方法(多层模块化优化)来研究2017年加利福尼亚州滑坡的2017年泥溪附近地区的变形时空模式。我们将卫星雷达数据从研究地点转变为空间上的网络,在该网络中,节点是地面斑块,边缘连接最近的邻居,一系列代表卫星的连续转移的层。每个边缘都由从数字高程模型和地面变形(当前的流变状态)测量的局部斜率(易感性)的乘积加权,从干涉合成孔径雷达(INSAR)。我们使用多层模块化优化来识别淋巴结(社区)的紧密连接簇,并能够识别泥溪和附近蠕动的山体滑坡的位置,这些滑坡尚未失败。我们开发了一个指标,社区的持久性,以量化导致失败的地面变形模式,并发现该指标从泥溪失败的几周内的基线价值增加。这些方法有望作为突出有灾难性失败风险的地区的一种技术。

As a result of extreme weather conditions, such as heavy precipitation, natural hillslopes can fail dramatically; these slope failures can occur on a dry day due to time lags between rainfall and pore-water pressure change at depth, or even after days to years of slow-motion. While the pre-failure deformation is sometimes apparent in retrospect, it remains challenging to predict the sudden transition from gradual deformation (creep) to runaway failure. We use a network science method -- multilayer modularity optimization -- to investigate the spatiotemporal patterns of deformation in a region near the 2017 Mud Creek, California landslide. We transform satellite radar data from the study site into a spatially-embedded network in which the nodes are patches of ground and the edges connect the nearest neighbors, with a series of layers representing consecutive transits of the satellite. Each edge is weighted by the product of the local slope (susceptibility to failure) measured from a digital elevation model and ground surface deformation (current rheological state) from interferometric synthetic aperture radar (InSAR). We use multilayer modularity optimization to identify strongly-connected clusters of nodes (communities) and are able to identify both the location of Mud Creek and nearby creeping landslides which have not yet failed. We develop a metric, community persistence, to quantify patterns of ground deformation leading up to failure, and find that this metric increases from a baseline value in the weeks leading up to Mud Creek's failure. These methods promise as a technique for highlighting regions at risk of catastrophic failure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源