论文标题

语义上一致的Landsat 8图像到Alpine区域的Sentinel-2图像翻译

Semantically-consistent Landsat 8 image to Sentinel-2 image translation for alpine areas

论文作者

Sokolov, M., Storie, J. L., Henry, C. J., Storie, C. D., Cameron, J., Ødegård, R. S., Zubinaite, V., Stikbakke, S.

论文摘要

研究界需求的日益增长,频繁且无成本的卫星图像的可用性。 Landsat 8和Sentinel-2等卫星星座每天提供大量有价值的数据。但是,这些卫星的传感器特性的差异使使用在数据集上训练并应用于另一个卫星的分割模型毫无意义的,这就是为什么域适应技术最近成为遥感中的活跃研究领域的原因。在本文中,使用HRSEMI2I模型进行了通过样式转移的域适应性实验,以缩小Landsat 8和Sentinel-2之间的传感器差异。本文的主要贡献是通过比较使用域适应性图像的分割结果与没有适应性的分割的结果来分析该方法的权宜之计。调整为与6波段图像一起工作的HRSEMI2I模型显示出平均值和每个类指标的平均值的显着相交性能改善。第二个贡献是在两个标签方案之间提供不同的泛化方案-Nalcms 2015和Corine。第一个方案是通过高级土地覆盖类别进行标准化,第二个是通过在现场进行的协调验证。

The availability of frequent and cost-free satellite images is in growing demand in the research world. Such satellite constellations as Landsat 8 and Sentinel-2 provide a massive amount of valuable data daily. However, the discrepancy in the sensors' characteristics of these satellites makes it senseless to use a segmentation model trained on either dataset and applied to another, which is why domain adaptation techniques have recently become an active research area in remote sensing. In this paper, an experiment of domain adaptation through style-transferring is conducted using the HRSemI2I model to narrow the sensor discrepancy between Landsat 8 and Sentinel-2. This paper's main contribution is analyzing the expediency of that approach by comparing the results of segmentation using domain-adapted images with those without adaptation. The HRSemI2I model, adjusted to work with 6-band imagery, shows significant intersection-over-union performance improvement for both mean and per class metrics. A second contribution is providing different schemes of generalization between two label schemes - NALCMS 2015 and CORINE. The first scheme is standardization through higher-level land cover classes, and the second is through harmonization validation in the field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源