论文标题
用相等长度的周期完成定向的Oberwolfach问题的解决方案
Completing the solution of the directed Oberwolfach problem with cycles of equal length
论文作者
论文摘要
在本文中,我们为定向的Oberwolfach问题的最后一个出色的情况提供了解决方案,该案例的长度均匀。也就是说,我们以奇数长度的表格解决了两个桌子。我们证明,$ 2M $顶点上的完整对称挖掘图,表示为$ k^*_ {2M} $,承认可分离分解为奇数长度$ m $的定向周期。这完全解决了定向的Oberwolfach问题,其长度均匀。
In this paper, we give a solution to the last outstanding case of the directed Oberwolfach problem with tables of uniform length. Namely, we address the two-table case with tables of odd length. We prove that the complete symmetric digraph on $2m$ vertices, denoted $K^*_{2m}$, admits a resolvable decomposition into directed cycles of odd length $m$. This completely settles the directed Oberwolfach problem with tables of uniform length.