论文标题

$ \ Mathcal {n} = 8 $ SuperGravity的渐近对称对称代数

Asymptotic Symmetry algebra of $\mathcal{N}=8$ Supergravity

论文作者

Banerjee, Nabamita, Rahnuma, Tabasum, Singh, Ranveer Kumar

论文摘要

$ \ Mathcal {n} = 1 $ SuperGravity的渐近对称代数最近使用ARXIV中的众所周知的$ 2 $ d CEFT(CCFT)技术构建:2007.03785。在本文中,我们将构造扩展到最大超对称的四维$ \ Mathcal {n} = 8 $渐变时空中的超级超级理论,并构建了扩展的渐近对称代数,我们将其称为$ \ \ \ \ \ \ \ \ \ \ \ \ $ \ $ \ $ $ $ \ $ \ $ \ \ $ \ \ $ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Mathfrak。我们使用天体CFT技术来查找适当的电流,以用于$ \ mathcal {n} = 8 $ super-poincaré和$ \ mathrm {surm {surm {surm {8)_r $ r-r-r-smmetry当前代数在天体领域$ \ mathcal $ \ nathCal {cs}^cs}^2 $。我们概括了阴影转换的定义,并表明该理论中有\ textit {no}无限尺寸扩展。

The asymptotic symmetry algebra of $\mathcal{N}=1$ supergravity was recently constructed using the well-known $2$D celestial CFT (CCFT) technique in ArXiv: 2007.03785. In this paper, we extend the construction to the maximally supersymmetric four dimensional $\mathcal{N}=8$ supergravity theory in asymptotically flat spacetime and construct the extended asymptotic symmetry algebra, which we call $\mathcal{N}=8$ $\mathfrak{sbms}_4$. We use the celestial CFT technique to find the appropriate currents for extensions of $\mathcal{N}=8$ super-Poincaré and $\mathrm{SU}(8)_R$ R-symmetry current algebra on the celestial sphere $\mathcal{CS}^2$. We generalise the definition of shadow transformations and show that there is \textit{no} infinite dimensional extension of the global $\mathrm{SU}(8)_R$ algebra in the theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源