论文标题

AMDET:基于注意的多维EEG变压器以识别情绪

AMDET: Attention based Multiple Dimensions EEG Transformer for Emotion Recognition

论文作者

Xu, Yongling, Du, Yang, Zou, Jing, Zhou, Tianying, Xiao, Lushan, Liu, Li, Pengcheng

论文摘要

情感计算是人工智能的重要组成部分,随着脑计算机接口技术的快速发展,基于脑电图信号的情感识别引起了广泛的关注。尽管有大量的深度学习方法,但有效地探索脑电图数据中的多维信息仍然是一个巨大的挑战。在本文中,我们提出了一个称为“基于注意力的多维” EEG变压器(AMDET)的深层模型,该模型可以利用脑电图数据的频谱空间 - 周期性特征之间的互补性,通过采用多维全球注意机制。我们将原始的脑电图数据转换为3D时间光谱空间表示,然后AMDET将使用频谱空间变压器编码器层在EEG信号中提取有效特征,并以时间注意力层的层集中在关键时间范围上。我们在DEAP,种子和种子IV数据集上进行了广泛的实验,以评估AMDET的性能,结果表现优于三个数据集上的最新基线。在Deap-arousal,deap-vorence,seed和seed-iv数据集中,精度为97.48%,96.85%,97.17%,87.32%。我们还进行了广泛的实验,以探索影响情绪和EEG信号耦合的可能的大脑区域。即使使用少数频道可以通过可视化学习模型的关注来确定的频道也可以执行。即使只有八个渠道,准确性也可以达到90%以上,并且对实际应用也有很大的利用和好处。

Affective computing is an important branch of artificial intelligence, and with the rapid development of brain computer interface technology, emotion recognition based on EEG signals has received broad attention. It is still a great challenge to effectively explore the multi-dimensional information in the EEG data in spite of a large number of deep learning methods. In this paper, we propose a deep model called Attention-based Multiple Dimensions EEG Transformer (AMDET), which can exploit the complementarity among the spectral-spatial-temporal features of EEG data by employing the multi-dimensional global attention mechanism. We transformed the original EEG data into 3D temporal-spectral-spatial representations and then the AMDET would use spectral-spatial transformer encoder layer to extract effective features in the EEG signal and concentrate on the critical time frame with a temporal attention layer. We conduct extensive experiments on the DEAP, SEED, and SEED-IV datasets to evaluate the performance of AMDET and the results outperform the state-of-the-art baseline on three datasets. Accuracy rates of 97.48%, 96.85%, 97.17%, 87.32% were achieved in the DEAP-Arousal, DEAP-Valence, SEED, and SEED-IV datasets, respectively. We also conduct extensive experiments to explore the possible brain regions that influence emotions and the coupling of EEG signals. AMDET can perform as well even with few channels which are identified by visualizing what learned model focus on. The accuracy could achieve over 90% even with only eight channels and it is of great use and benefit for practical applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源