论文标题

一类非线性参数化回归的单调参数估计而没有过度参数化

Monotonous Parameter Estimation of One Class of Nonlinearly Parameterized Regressions without Overparameterization

论文作者

Glushchenko, Anton, Lastochkin, Konstantin

论文摘要

未知参数的估计定律向量$θ$是针对一类非线性参数化回归方程$ y \ lest(t \ right)=ω\ left(t \右)θ\ left(θ\ firt)$的。我们将注意力限制为参数化,这些参数化在实际情况下广泛获得时,当$θ$中的多项式用于形成$θ\ left(θ\ right)$时。对于他们来说,我们引入了一个新的“线性化性”假设,即来自参数的过份术的映射$θ\ left(θ\ right)$以标准代数函数而存在。在这种假设和对回归器有限激发的需求下,根据动态回归器扩展和混合技术,我们提出了一项程序,将非线性回归方程式降低到线性参数化的过程中,而不应用奇异性引起操作,并且需要识别过度应识别过度的参数矢量。结果,得出具有指数收敛速率的估计定律,与已知的解决方案不同,(i)不需要严格的p单音频率条件,并且要知道$θ$的先验信息,(ii)确保参数误差向量的elementwise单调性。学术示例和二-DOF机器人操纵器控制问题都可以说明我们方法的有效性。

The estimation law of unknown parameters vector $θ$ is proposed for one class of nonlinearly parametrized regression equations $y\left( t \right) = Ω\left( t \right)Θ\left( θ\right)$. We restrict our attention to parametrizations that are widely obtained in practical scenarios when polynomials in $θ$ are used to form $Θ\left( θ\right)$. For them we introduce a new 'linearizability' assumption that a mapping from overparametrized vector of parameters $Θ\left( θ\right)$ to original one $θ$ exists in terms of standard algebraic functions. Under such assumption and weak requirement of the regressor finite excitation, on the basis of dynamic regressor extension and mixing technique we propose a procedure to reduce the nonlinear regression equation to the linear parameterization without application of singularity causing operations and the need to identify the overparametrized parameters vector. As a result, an estimation law with exponential convergence rate is derived, which, unlike known solutions, (i) does not require a strict P-monotonicity condition to be met and a priori information about $θ$ to be known, (ii) ensures elementwise monotonicity for the parameter error vector. The effectiveness of our approach is illustrated with both academic example and 2-DOF robot manipulator control problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源