论文标题

在非平滑分数间隔值多目标优化的最佳条件和二元关系

Optimality conditions and duality relations in nonsmooth fractional interval-valued multiobjective optimization

论文作者

Hung, Nguyen Huy, Van Tuyen, Nguyen

论文摘要

本文介绍了非平滑分数间隔值多目标优化的帕累托解决方案。我们首先通过考虑较低的间隔订单关系来引入所考虑问题的四种类型的帕累托解决方案,然后应用一些高级分析和广义分化的高级工具来为这些解决方案建立必要的最佳条件。还通过引入(严格的)广义凸函数的概念,以限制/mordukhovich subdifatiention的局部lipschitzian函数来定义(严格)广义的凸函数。最后,制定了MOND - Weir类型的双重模型,并检查了弱,较强且类似的双重性关系。

This paper deals with Pareto solutions of a nonsmooth fractional interval-valued multiobjective optimization. We first introduce four types of Pareto solutions of the considered problem by considering the lower-upper interval order relation and then apply some advanced tools of variational analysis and generalized differentiation to establish necessary optimality conditions for these solutions. Sufficient conditions for Pareto solutions of such a problem are also provided by means of introducing the concepts of (strictly) generalized convex functions defined in terms of the limiting/Mordukhovich subdifferential of locally Lipschitzian functions. Finally, a Mond--Weir type dual model is formulated, and weak, strong and converse-like duality relations are examined.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源